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Tensorization of neural networks

in Deep Learning

“Representing large weight matrices in NN with product of small 

tensors…”
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A motivating example
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Preliminary: Tensor Graph and Einstein Summation Notation

In the syntax of tensor graph notation: 

• Node = tensor

• Edge = “mode” / dimensionality

• Connection = tensor contraction

• Combining multiple tensors to form a 

new one. 

• A graph representation of Einstein’s 

summation. 
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Tensor graph notation Matrix notation

𝑪(𝑛, 𝑟) = 𝑨 𝑚, 𝑛, 𝑘 𝑩(𝑚, 𝑘, 𝑟)

𝑐 = 𝑎 𝑛 𝑏(𝑛)

𝑪(𝑚, 𝑘) = 𝑨 𝑚, 𝑛 𝑩(𝑛, 𝑘)

Einstein summation notation pytorch



Tensorized neural networks

• A fully connected layer (omitting the bias) 𝒚 = 𝑾𝒙 can be formulated as contraction:

• 𝒚 𝑛 = 𝑾 𝑛,𝑚 𝒙 𝑚 ,with 𝑾 ∈ ℝ𝑁×𝑀 , 𝒙 ∈ ℝ𝑀.

• Size: 𝑁 ×𝑀.

• A bottleneck FC layer as:

• 𝒚(𝑛) = 𝑽 𝑛, 𝑟 𝑼 𝑟,𝑚 𝒙(𝑚) with 𝑽 ∈ ℝ𝑁×𝑅 , 𝑼 ∈ ℝ𝑅×𝑀 , 𝒙 ∈ ℝ𝑀.

• Size: 𝑅 × (𝑀 + 𝑁).

• A tensor-train layer [Novikov et al. 2015] closely related to Matrix Product State. 

• 𝒚 𝑛1, 𝑛2, … , 𝑛𝐷 =

𝑾[𝐷] 𝑛𝐷, 𝑟𝐷−1, 𝑟𝐷, 𝑚𝐷 … 𝑾[2] 𝑛2, 𝑟1, 𝑟2,𝑚2 𝑾[1] 𝑛1, 𝑟0, 𝑟1, 𝑚1 𝒙 𝑚1, 𝑚2, … ,𝑚𝐷 ,

• Size: σ𝑑=1
𝐷 𝑀𝑑𝑁𝑑𝑅𝑑−1𝑅𝑑 instead of M×𝑁 = ς𝑑=1

𝐷 𝑀𝑑𝑁𝑑

Unrestricted | © Siemens 2023 | Yinchong Yang | T DAI HCA-DE| 2023-05-23

Novikov, Alexander, et al. "Tensorizing neural networks." NeurIPs 2015.
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Tensorized neural networks

• Implementation in pytorch:

• Step 1: decide the decomposition of input and output modes, as well as the rank. 

• Example: 4096 → 16 can be decomposed into 8 × 8 × 8 × 8 → (2 × 2 × 2 × 2)

with rank 2

• Step 2: draw a tensor train layer and name the edges. 

• Example: 

• Step 3: implement an torch.einsum operation with given names in step 2.

• Step 4: implement the backward pass. 
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Tensorized neural networks

• Line of research: new architectures based on tensorized neural network:

• Tensorized CNN [Garipov et al. 2016], 

• Tensorized RNN [Yang et al. 2017, Tjandra et al. 2017], 

• Line of research: new applications: 

• Time series data [Yu et al. 2017]

• Video data – e.g. autonomous driving (contribution by Max Pittner) with LRP.

• Sparse tabular data [Yang et al. 2017]

• Line of research: other decompositions

• CP and Tucker [Pan et al. 2023] (left)

• Tensor-Ring [Wang et al. 2018] (right)
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Tensorized neural networks
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• Flexible topology [Li and Sun 2020, Master thesis Arber Qoku]

• Representing the core tensor topology with adjacency matrix 

(vectorized lower-/upper triangle). 

• Optimize the topology of core tensors as a hyper-parameter via 

evolution strategy and Bayesian optimization:  

MNIST CIFAR10 Paul15

TT TR TN TT TR TN TT TR TN

Li, Chao, and Zhun Sun. Evolutionary topology search for tensor network 

decomposition. ICML, 2020.

Accuracy



Uncertainty quantification with 

GP in Deep Learning

“Combining the predictive distribution of GP with representation 

learning by NN.”
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Gaussian Processes Recap

• Standard Gaussian Process regression: 

• 𝑝 𝑦∗ 𝒙∗, 𝐷 = 𝑝 𝑦∗ 𝒙∗, 𝜽 𝑝 𝜽 𝐷 𝑑𝜽

= 𝑁(
1

𝜎2
𝒌∗
𝑇 𝑲+ 𝜎2𝑰 −1𝒚, 𝑘∗∗ − 𝒌∗

𝑇 𝑲+ 𝜎2𝑰 −1𝒌∗ + 𝜎2)

with

𝒌∗ = (𝑘 𝒙∗, 𝒙𝑖 )𝑖=1
𝑛 𝜖ℝ𝑛 and 𝑲 = 𝑘 𝒙𝑖 , 𝒙𝑗

𝑖=1,𝑗=1

𝑛,𝑛
𝜖ℝ𝑛×𝑛

being the kernel function that measures the similarity between data points. 

• The computational complexity is 𝑶(𝑛3) due to the matrix inverse. 
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Feature space Target space

Kernel / similarity space Target space

𝒚∗

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html

https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_targets.html


Scalable Gaussian Processes

• Various approaches have been proposed to approximate the full covariance matrix. But the 

idea remains the same: representing the whole training set with a few “inducing points”:

𝑲 ≈ 𝑸 = 𝑲𝑛𝑚𝑲𝑚𝑚
−1 𝑲𝑚𝑛

so that it can be inverted using the Woodbury formula [Williams & Seeger 2000]. That is, 

𝑘 𝒙𝑖 , 𝒙𝑗 ≈ 𝒌 𝒙𝑖 , 𝒁
𝑇𝑲𝑚𝑚

−1 𝒌 𝒙𝑗 , 𝒁

• The set of inducing points 𝒁 could also be learned as parameter:  

• FITC [Snelson et al. 2000]

• VFE [Titias 2009]

• SVGP [Hensman et al. 2013]

• PPGP [Jankowiak et al. 2020]
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Scalable Gaussian Processes for collaborative filtering

• Collaborative filtering: modeling user-item interaction, applied in recommender systems. 

• Classical approaches include matrix decomposition such as SVD and NMF, more 

advanced methods such as multiway NN [Nickel et al. 2015].

𝑦𝑖,𝑗 = 𝑓(𝒂𝑖 , 𝒃𝑗)

• with

𝒀 ∈ ℝ𝐼×𝐽 , 𝑨 ∈ ℝ𝐼×𝑟, 𝑩 ∈ ℝ𝐼×𝑟

• The expressiveness of the model depends on the choice of function 𝑓.  

• GP-LVM is one of the very few methods are capable of expressing predictive 

uncertainty, but doesn’t scale well to large and sparse user-item matrices. 
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Nickel, Maximilian, et al. A review of relational machine learning for knowledge graphs. Proceedings of the IEEE 104.1 

(2015): 11-33.



Scalable Gaussian Processes for collaborative filtering

• Our proposal: let 𝑓 be a Gaussian Process regression and learn the embeddings jointly. 

• Challenges and solutions: 

• Kernels → Define two kernels for 𝑨 and 𝑩 respectively. 

• Scalability (up to 10 million) → SOTA scalable GP. 

• Inducing points → “inducing pairs”, initialized via kernel PCA

• Evaluation → Quantile-Performance-Plot
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Yang and Buettner. Multi-output gaussian processes for uncertainty-aware recommender systems. UAI. 2021.



Scalable Gaussian Processes for Deep Neural Networks

• CNN + Scalable GP:

• Tasks: Bone-age prediction, lesion localization. 

• Challenge: inducing points initialization.

• Solution: pre-training with auto-encoders.
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Wu, et al. Quantifying predictive uncertainty in medical image analysis with deep kernel learning. 2021 IEEE ICHI. 2021.



Scalable Gaussian Processes for Deep Neural Networks

• RNN + Scalable GP

• Tasks: Progression-free survival, length of stay [Sources]

• Challenge: inducing points initialization

• Solution: pre-training, esp. the deep metric learning: 
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Wu, et al. Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated Failure Time Models. MLHC (JMLR). 2021.
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